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Diagonalization of the elliptic Ruijsenaars model.
Correspondence with the Belavin model?
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Abstract. Studied is the elliptic Ruijsenaars model, which is a difference analogue of the Calogero-
Sutherland-Moser model. Using a novel relationship between the elliptic Ruijsenaars operator and the
transfer matrix of the Belavin model, we diagonalize the Ruijsenaars operator by the algebraic Bethe
ansatz method.
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1 Introduction

The elliptic Ruijsenaars model was introduced as an
integrable difference Schrödinger operator in [1]. This
model can be regarded as an elliptic generalization of
the Macdonald difference operator [2], and in the contin-
uum limit it reduces to the elliptic Calogero-Sutherland-
Moser (CSM) model [3]. The eigenfunction and the
algebraic structure of the Macdonald operator have been
recently well understood by use of the affine Hecke algebra
[4–6], and from the physical view point the CSM model is
described by quasi-particles which obey “exclusion statis-
tics” [7]. On the other hand, studies of the elliptic Ruijse-
naars model are not sufficient.

In this article as an extension of our previous works
[8–10], we shall study a novel relationship between the
elliptic Ruijsenaars model (with a specific coupling con-
stant) and the inhomogeneous Belavin model. We show
that, for a certain coupling constant, the elliptic Ruijse-
naars operator preserves the finite dimensional function
space, and that the Ruijsenaars difference operator is rep-
resented by use of the R-matrix for the Belavin model.
Based on this representation, we shall apply the algebraic
Bethe ansatz method to diagonalize the N -body elliptic
Ruijsenaars operator.

This article is organized as follows. In Section 2 we
review the construction of the elliptic Ruijsenaars oper-
ator. Our fundamental tool is Shibukawa-Ueno’s elliptic
R-operator which satisfies the Yang-Baxter equation. In
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Section 3 we show that the elliptic Ruijsenaars operator
with a specific coupling constant corresponds to the trans-
fer matrix of the inhomogeneous Belavin model. Diagonal-
ization of the two-body problem is studied in Section 4.
We take a trigonometric limit, and compare our results
with previously known results. We then in Section 5 apply
the algebraic Bethe ansatz method to derive eigenvalues
of the Ruijsenaars operators. Last section is devoted to
the concluding remarks.

2 Construction of the Ruijsenaars operator

We define the elliptic R-operator [11] as

Rj,k(ξ)=
1

σµ(ξ; τ)
(σµ(zjk; τ)− σξ(zjk; τ)ŝj,k) , (2.1)

where ξ is called the spectral parameter, and µ is an ar-
bitrary constant. For brevity we denote zjk = zj − zk.
Definitions and properties of the elliptic functions are
summarized in Appendix. We have used the permutation
operator ŝj,k for coordinates zj satisfying

ŝ 2
j,k = 11, zj ŝj,k = ŝj,k zk,

ŝj,k ŝk,l = ŝk,l ŝl,j = ŝl,j ŝj,k,

where j 6= k 6= l 6= j. The R-operator (2.1) fulfills follow-
ing relations;
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(A) the Yang-Baxter equation,

Ri,j(ξij)R
i,k(ξik)Rj,k(ξjk)=Rj,k(ξjk)Ri,k(ξik)Ri,j(ξij),

(2.2)

i

i jj

k

k
ξij

ξij

ξik
ξik

ξjk

ξjk

(B) the unitarity condition,

Rj,k(ξ)Rk,j(−ξ) = 11, (2.3)

(C) the quasi-classical condition,

Rj,k(ξ = 0) = ŝj,k. (2.4)

Besides the elliptic R-operator, we introduce the shift op-
erator T̂j(β) as(
T̂j(β) f

)
(z1, . . . , zN) = f(z1, . . . , zj + β, . . . , zN ). (2.5)

We note that the elliptic R-operator (2.1) commutes with
the shift operators as

[Rj,k(ξ) , T̂j(β) T̂k(β)] = 0. (2.6)

j j kk

ξξ

To reduce the elliptic R-operator into a finite-dimensional
matrix form, we define the vector space Vm(ξ); a function
f(z) ∈ Vm(ξ) is an entire function, and satisfies doubly
quasi-periodic conditions,

f(z + 1) = f(z), (2.7a)

f(z + τ) = e−2πimz−πimτ+2πiξf(z). (2.7b)

The vector space Vm(ξ) is m-dimensional, and its bases
are written as

θα(z, ξ) = ϑ

 α
m

−ξ

 (mz;mτ)

=
∑
n∈Z

exp

(
πi(nm+α)2 τ

m
+2πi(nm+α)

(
z−

ξ

m

))
,

(2.8)

where α ∈ Zm = Z/mZ. One sees that the shift opera-

tor T̂ (−ξ/m) maps Vm(0) isomorphically onto Vm(ξ), and
that the elliptic operator R(ξ12) maps Vm(ξ1)⊗Vm(ξ2 +µ)
to Vm(ξ1 +µ)⊗Vm(ξ2). In the following we use a notation
θα as bases of Vm(0).

We shall now introduce the elliptic Ruijsenaars opera-
tor. By use of the R-operator (2.1), we define the difference
operator as

D̂1(ξ) = RN,N−1(ξNN−1) · · ·RN,1(ξN1) T̂N(β), (2.9)

where ξ = (ξ1, . . . , ξN ) and β are arbitrary constants. This

operator D̂1(ξ) is integrable [9,10], and the commutative

difference operators, [D̂n1(ξ) , D̂n2(ξ)] = 0 for n1, n2 =
1, 2, . . .N , are defined as

D̂n(ξ) =
N∏

j=N−n+1

 x
N−n∏
k=1

Rj,k(ξjk)

 T̂j(β). (2.10)

It might be helpful to note that these difference operators
D̂n(ξ) can be depicted as

1

=

N−n N−n+1 N· · ·

· · ·

· · ·

· · ·

D̂n(ξ)

It should be remarked that we have another commutative
operator D̂0(κ),

D̂0(κ) =
N∏
j=1

T̂j(κ), (2.11)

which denotes the total shift operator. As the difference
operators D̂n(ξ) are integrable for arbitrary ξ, we set

D̂n = lim
ξjk=−(k−j)µ

D̂n(ξ). (2.12)

It is known that the operators D̂n preserve the symmetric
function spaces. In fact, when we suppose that the oper-
ators D̂n act on the symmetric z-space (i.e., we replace
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the permutation operators ŝj,k with unity when they are
moved to the rightmost of expression), the difference op-

erators D̂n are explicitly written as [9]

D̂n =
n∏
k=1

ϑ1(kµ; τ)

ϑ1((N + 1− k)µ; τ)

×
∑
|I|=n

 ∏
j∈I
k∈IC

ϑ1(zjk − µ; τ)

ϑ1(zjk; τ)

 T̂I(β). (2.13)

This set of operators is nothing but the higher commuting
Hamiltonian for the elliptic Ruijsenaars operator [1].

In the following we study the slightly modified differ-
ence operators defined by

D̂n = D̂n D̂0(−n
µ

m
), (2.14)

with a condition (m is a positive integer),

β = N
µ

m
· (2.15)

Although the operators (2.14) are different from the orig-
inal operators due to the commutative shift operator

D̂0(−nµ/m), we call hereafter the difference operators D̂n
the elliptic Ruijsenaars operators. We should note that the

lowest operator D̂1 is explicitly written as

D̂1 =
ϑ1(µ; τ)

ϑ1(Nµ; τ)

N∑
j=1

 N∏
k=1
k 6=j

ϑ1(zjk − µ; τ)

ϑ1(zjk; τ)


× T̂j

(
Nµ

m

) N∏
j=1

T̂j

(
−
µ

m

) , (2.16)

which, in the trigonometric limit eiπτ → 0, reduces to

D̂Tri
1 =

sin(πµ)

sin(Nπµ)

N∑
j=1

 N∏
k=1
k 6=j

sinπ(zjk − µ)

sin(πzjk)


× T̂j

(
Nµ

m

) N∏
j=1

T̂j

(
−
µ

m

) . (2.17)

We remark that the two-body elliptic Ruijsenaars differ-
ence operator (2.16) with even m cases as the generalized
Lamé equation has been also studied based on different
techniques [12,13]. By use of the higher spin representa-
tion for the Sklyanin algebra [14] and the fusion procedure,
the Bethe ansatz method is applied [12].

3 Correspondence with the Belavin model

We define the modified R-operator [15] as

Rj,km (ξjk) = T̂j

(
ξj + µ

m

)
T̂k

(
ξk

m

)
Rj,k(ξjk)

× T̂j

(
−
ξj

m

)
T̂k

(
−
ξk + µ

m

)
, (3.1)

where m is a positive integer. One sees that the modified
operator Rj,km (ξ) is an endomorphism of the vector spaces
Vm(0)⊗Vm(0). As far as we suppose that operators act on
the vector space Vm(0)⊗N , the modified operator Rm(ξ)
is given by a finite dimensional representation as m2×m2

matrix. We have [8,15,16]

Rm(ξ) θα ⊗ θβ =
∑

γ,δ∈Zm

Rm(ξ)γ,δα,β θγ ⊗ θδ, (3.2)

where the matrix elements Rm(ξ)γ,δα,β are computed as

Rm(ξ)γ,δα,β =
1

σµ(ξ; τ)

×

ϑ′


1

2

1

2

 (0;mτ)ϑ


1

2
−
α− β

m

1

2

 (ξ − µ;mτ)

ϑ


1

2
−
γ − β

m

1

2

 (ξ;mτ)ϑ


1

2
−
α− γ

m

1

2

 (−µ;mτ)

,

(3.3)

iff α+ β = γ + δ mod m, or else vanish. This R-matrix is
nothing but the Boltzmann weight for the Belavin model
[17,18], and coincides with Baxter’s eight-vertex model
[19] in the case of m = 2. In the following we set the vector
space as Vm(0)⊗N , i.e., the modified elliptic R-operator
can be identified with the Belavin R-matrix.

As the modified R-operator Rm(ξ) also satisfies rela-
tions (2.2–2.4), we can define the integrable lattice model
in the usual way. The transfer matrix for the inhomoge-
neous Belavin model is given by

TN (λ; ξ) = TraR
a,N
m (λ− ξN ) · · · Ra,1m (λ− ξ1), (3.4)

where a is an auxiliary space, and parameters
ξ = (ξ1, . . . , ξN ) denotes the inhomogeneity. Main obser-
vation in this article is that the difference Ruijsenaars op-

erator D̂1 (2.16) is written as

D̂1 = RN,N−1
m (−µ) · · · RN,1m (−(N − 1)µ)

= lim
λ=ξN

ξjk=−(j−k)µ

TN(λ; ξ). (3.5)

This equality indicates that the Ruijsenaars operator D̂1

preserves a function space Vm(0)⊗N . In the same manner,
one sees that the higher commuting Hamiltonian opera-
tors D̂n (2.14) also preserve a space Vm(0)⊗N . We can
therefore diagonalize the transfer matrix of the Belavin
model to calculate the eigenvalues of the elliptic Ruijse-

naars model D̂1 on Vm(0)⊗N .
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4 Two-body problem

We consider a direct diagonalization of the two-body
(N = 2) Ruijsenaars operator (2.16). This difference
operator has also appeared in the representation of the
Sklyanin algebra [14]. In this case the eigenvalues are given
by diagonalizing the m2×m2 matrix Rm(−µ) (3.3). Note
that the eigenvalues for 1

2m(m− 1) anti-symmetric func-

tions are zeros, and that we should pick up 1
2m(m+1) sym-

metric functions as eigenfunctions of the two-body Ruijse-
naars operator (2.16). We do not know the explicit form
of the eigenvalues for generalm cases, and in the following
we only give some examples and their trigonometric limit.
As we have diagonalized the elliptic Ruijsenaars operator

D̂1 only on Vm(0)⊗N , we recover a part of the Macdonald
polynomials in the trigonometric limit.

(1) m = 2,

Eigenvalues Eigenstates

2R2(−µ)01
01 | ↑〉1 | ↓〉2 + | ↓〉1 | ↑〉2

R2(−µ)00
00 +R2(−µ)11

00 | ↑〉1 | ↑〉2 + | ↓〉1 | ↓〉2

R2(−µ)00
00 −R2(−µ)11

00 | ↑〉1 | ↑〉2 − | ↓〉1 | ↓〉2

where we set spin states as

| ↑〉j = ϑ3(2zj; 2τ), | ↓〉j = ϑ2(2zj; 2τ).

In the trigonometric limit eiπτ → 0, above result reduces
into

Eigenvalues Eigenstates

1 1

1

cos(πµ)
sin(2πz1) + sin(2πz2),

cos(2πz1) + cos(2πz2)

(2) m = 3,

Eigenvalues Eigenstates

1
2 (a+b+c−∆) | ↑〉1|0〉2 + |0〉1| ↑〉2 +A−| ↓〉1| ↓〉2

A−| ↑〉1| ↑〉2 + |0〉2| ↓〉2 + | ↓〉1|0〉2

A−|0〉1|0〉2 + | ↑〉1| ↓〉2 + | ↓〉1| ↑〉2
1
2 (a+b+c+∆) | ↑〉1|0〉2 + |0〉1| ↑〉2 +A+| ↓〉1| ↓〉2

A+| ↑〉1| ↑〉2 + |0〉1| ↓〉2 + | ↓〉1|0〉2

A+|0〉1|0〉2 + | ↑〉1| ↓〉2 + | ↓〉1| ↑〉2

where each parameter is defined as

A± =
a− b− c±∆

2h
, ∆ =

√
(a− b− c)2 + 4(f + g)h,

a = R3(−µ)00
00, b = R3(−µ)01

01, c = R3(−µ)02
02,

f = R3(−µ)00
12, g = R3(−µ)00

21, h = R3(−µ)12
00.

Each spin state is given as

| ↑〉j = ϑ

0

0

 (3zj; 3τ),

|0〉j = ϑ

1/3

0

 (3zj; 3τ),

| ↓〉j = ϑ

2/3

0

 (3zj; 3τ).

In a trigonometric limit, we have

Eigenvalues Eigenstates

1 1, sin 2π(z1 + z2),

cos 2π(z1 + z2),

cos
(

1
3πµ

)
cos(πµ)

cos(2πz1) + cos(2πz2),

sin(2πz1) + sin(2πz2),

cos(2πz12) +
cos(2

3πµ) sin(πµ)

sin(1
3πµ)

5 Bethe Ansatz

It is not straightforward to diagonalize the N -body Ruijse-
naars operator (2.16) as in the previous section. Owing to
the correspondence (3.5) between the Ruijsenaars opera-
tor and the transfer matrix of the inhomogeneous Belavin
model, we can apply the Bethe ansatz method.

5.1 Eight-Vertex model

We first consider the N -body problem with m = 2. We di-
agonalize the transfer matrix of the inhomogeneous XY Z
model following the usual algebraic Bethe ansatz method
[20–22], and then using the correspondence (3.5) we com-
pute the eigenvalues of the Ruijsenaars operator (2.16).
As was demonstrated in the previous section, the up- and
down-spin for the XY Z spin chain is replaced by the ellip-
tic functions ϑ3(2z; 2τ) and ϑ2(2z; 2τ), respectively. When
we set M = N/2, the eigenvalue TN(λ; ξ) of the transfer

matrix T̂N(λ; ξ) is given as

TN(λ; ξ) =
N∏
j=1

σµ(λ− ξj ; 2τ)

σµ(λ− ξj ; τ)

×

(
e2πiθ

N∏
l=1

h+(λ− ξl)
M∏
k=1

α(λ, λk)

+ e−2πiθ
N∏
l=1

h−(λ− ξl)
M∏
k=1

α(λk, λ)

)
, (5.1)
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where functions are defined as follows;

h+(ξ) =
ϑ0(0; 2τ)ϑ0(ξ − µ; 2τ)

ϑ0(−µ; 2τ)ϑ0(ξ; 2τ)
,

h−(ξ) =
ϑ0(0; 2τ)ϑ1(ξ; 2τ)

ϑ0(−µ; 2τ)ϑ1(ξ − µ; 2τ)
,

α(ξ1, ξ2) =
ϑ0(ξ21 − µ; 2τ)ϑ1(ξ21 − µ; 2τ)

ϑ0(ξ21; 2τ)ϑ1(ξ21; 2τ)
·

Rapidities λk and θ are solutions of the Bethe ansatz equa-
tions,

N∏
k=1

h+(λj − ξk)

h−(λj − ξk)
= e−4πiθ

M∏
k=1
k 6=j

α(λk, λj)

α(λj , λk)
· (5.2)

Note that the Bethe eigenstates are defined as a Fourier
series,

Ψθ(λ)=
∞∑

l=−∞

e2πilθ Bl+1,l−1(λ1) · · ·Bl+M,l−M(λM )|Ωl−M 〉,

(5.3)

where operators Bk,l(λ) are the Bethe creation operator,
and the pseudo-vacuum |Ωl〉 = ωl1⊗· · ·⊗ω

l
N is given with

arbitrary parameter s as

ωln = ϑ1(s− ξn − (n+ l −
1

2
)µ; 2τ)

× | ↑〉+ ϑ0(s− ξn−(n+l−
1

2
)µ; 2τ)| ↓〉.

To obtain the eigenvalue of the elliptic Ruijsenaars opera-

tor D̂1, we take a limit (3.5), λ = ξN and ξjk = −(j−k)µ,
in (5.1, 5.2), and use the Landen transformation formula.
As a result, we obtain the eigenvalues of the elliptic Rui-
jsenaars operator (2.16) as

D1 = e2πiθ
M∏
l=1

ϑ1(λ̃l − µ; τ)

ϑ1(λ̃l; τ)
, (5.4)

where rapidities λ̃k ≡ λk + ξN and θ satisfy the Bethe
ansatz equation,

M∏
k=1
k 6=j

ϑ1(λ̃jk − µ; τ)

ϑ1(λ̃jk + µ; τ)
= e4πiθ ϑ1(λ̃j −Nµ; τ)

ϑ1(λ̃j ; τ)
, (5.5)

for j = 1, 2, . . . ,M = N
2 . We further set the eigenstates

Ψθ(λ) to be the symmetric functions, though unfortu-
nately it is generally not trivial to write the explicit form
of the Bethe states (5.3).

5.2 Belavin model

In the same way, we can apply the (nested) Bethe ansatz
for generalm case. Following a result of [23], we obtain the

eigenvalue of the elliptic Ruijsenaars operator (2.16) as

D1 = ei〈ε̄0,θ〉
M1∏
l=1

ϑ1(λ
(1)
l − µ; τ)

ϑ1(λ
(1)
l ; τ)

· (5.6)

Here the vectors ε̄α for α = 0, 1, . . . ,m−1 and θ are given
using a orthonormal vector εα as

ε̄α = εα −
1

m

m−1∑
β=0

εβ , θ =
m−1∑
β=0

θβ εβ .

Parameters Mα and spectral parameters λ
(0)
j are given by

Mα =
(

1−
α

m

)
N, λ

(0)
j = −(j −N)µ.

Rapidities λ
(α)
j and θβ satisfy the nested Bethe ansatz

equations,

ei〈ε̄α−ε̄α+1,θ〉
Mα∏
l=1

ϑ1(λ
(α+1)
j − λ

(α)
l −µ)

ϑ1(λ
(α+1)
j −λ(α)

l )

=

Mα+1∏
k=1
k 6=j

ϑ1(λ
(α+1)
jk −µ)

ϑ1(λ
(α+1)
jk +µ)

Mα+2∏
l=1

ϑ1(λ
(α+2)
l −λ(α+1)

j −µ)

ϑ1(λ
(α+2)
l −λ(α+1)

j )
·

(5.7)

As was noticed in the eight-vertex model, we should pick
up the symmetric eigenstates.

6 Conclusion

We have shown a novel relationship between the elliptic
Ruijsenaars operator and the Belavin model. The transfer
matrix of the inhomogeneous Belavin model coincides with
the Ruijsenaars operator with a specific coupling constant
over function space Vm(0)⊗N . For simple cases such as
two-body problem, we have checked that our solutions give
previously known Macdonald polynomials in the trigono-
metric limit. We should stress that, contrary to the case of
the Belavin model, the space Vm(0)⊗N is not complete as a
function space of the Ruijsenaars operator (2.16). See [24]
for discussions on complete function space. We have also
derived the eigenvalues of the N -body elliptic Ruijsenaars
operator (2.16) by use of the Bethe ansatz.

Our method will be applied to the generalized elliptic
Macdonald-Koornwinder operator (the D-type Macdonald
operator) [9,25] when we consider the Belavin model with
open boundary. We hope to study this problem in future
issues.
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Appendix: Elliptic function

We define the theta functions as [26],

ϑ

a
b

(z; τ )=
∑
n∈Z

exp
(
πi(n+ a)2τ+2πi(n+ a)(z + b)

)
, (A.1)

where =τ > 0. The zeros of the theta function ϑ

[
a

b

]
(z; τ)

are z = (1/2− a) τ + (1/2− b) modulo Z + Zτ . We also
use the following notations;

ϑ1(z; τ )=ϑ

1/2

1/2

 (z; τ ), ϑ2(z; τ )=ϑ

1/2

0

 (z; τ ),

ϑ3(z; τ )=ϑ

0

0

 (z; τ ), ϑ0(z; τ )=ϑ4(z; τ )=ϑ

 0

1/2

 (z; τ ).

In terms of these theta functions, we define σµ(ξ; τ) as

σµ(ξ; τ) =
ϑ′1(0; τ)ϑ1(ξ − µ; τ)

ϑ1(ξ; τ)ϑ1(−µ; τ)
, (A.2)

where ϑ′1(ξ; τ) denotes a derivative with respect to ξ. By
comparing zeros and poles of the both hands sides, we can
derive useful formulae such as

σλ(z; τ )σµ(w; τ ) = σλ+µ(w; τ )σλ(z − w; τ )

+ σµ(w − z; τ )σλ+µ(z; τ ),

σµ(z; τ ) =

m−1∑
k=0

σµ−kτ (mz;mτ ) e2πikz,

m−1∏
k=0

ϑ

 1
2 + k

m

1
2

 (z;mτ ) = γ0 ϑ1(z; τ ),

where γ0 does not depend on z.

References

1. S.N.M. Ruijsenaars, Commun. Math. Phys. 110, 191
(1987).

2. I.G. Macdonald, Symmetric Functions and Hall Polynomi-
als, 2nd ed. (Oxford Univ. Press, Oxford, 1995).

3. M.A. Olshanetsky, A.M. Perelomov, Phys. Rep. 94, 313
(1983).
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